Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jinshan Huang, Yongfei Wu and Xinde Zhu*

Department of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's
Republic of China

Correspondence e-mail: tzb@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.052$
$w R$ factor $=0.140$
Data-to-parameter ratio $=14.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

$\operatorname{Bis}(\mu-2,4$-dihydroxyacetophenone salicylhydrazidato)bis[pyridinezinc(II)] dimethylformamide disolvate

The tridentate Schiff base ligand 2,4-dihydroxyacetophenone salicylhydrazide, derived from the condensation of 2,4dihydroxyacetophenone and salicylhydrazide, in the presence of pyridine and N, N^{\prime}-dimethylformamide, forms a dinuclear distorted square-pyramidal Zn complex with $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, viz. $\left[\mathrm{Zn}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right] \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$. The complex is centrosymmetric and the two Zn atoms are bridged by two phenolate O atoms.

Comment

Schiff base compounds have many applications in homogeneous catalysts and antitumor activities (Desai et al., 2001). We report here the synthesis and crystal structure of one such Schiff base complex, namely bis(μ-2,4-dihydroxyacetophenone salicylhydrazidato)bis[pyridinezinc(II)] dimethylformamide disolvate, (I).

(I)

In the crystal structure of (I), there is a centre of symmetry at the mid-point of the $\mathrm{Zn} \cdots \mathrm{Zn}$ vector (Fig. 1). Each Zn atom has a distorted square-pyramidal coordination geometry, formed by one N atom and two O atoms from one Schiff base ligand, one O atom from another Schiff base ligand, and one N atom from a pyridine molecule. Bond lengths and angles involving Zn 1 are listed in Table 1.

The crystal structure is stabilized by hydrogen bonds of the types $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ (Table 2 and Fig. 2).

Experimental

To a solution of 2,4-dihydroxyacetophenone salicylhydrazide $(0.143 \mathrm{~g}, 0.5 \mathrm{mmol})$ in DMF $(15 \mathrm{ml}), \mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.110 \mathrm{~g}$, 0.5 mmol) dissolved in pyridine (5 ml) was added with continuous stirring. The mixture was stirred for 5 h at 323 K . After filtration, the yellow solution was allowed to stand at room temperature. Yellow block-shaped crystals were formed by slow evaporation of the solvent at room temperature over a period of 7 d .

Crystal data

$\left[\mathrm{Zn}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right] \cdot-$
$2 \mathrm{C}_{3} \mathrm{H} 7 \mathrm{NO}$
$M_{r}=1003.66$
Monoclinic, $P 2_{1} / c$
$a=9.8061(7) \AA$
$b=9.9171(7) \AA$
$c=23.7427(17) \AA$
$\beta=92.545(2)^{\circ}$
$V=2306.7(3) \AA^{3}$
$Z=2$
Data collection
Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 2001)
$T_{\text {min }}=0.733, T_{\text {max }}=0.809$
12351 measured reflections
$D_{x}=1.445 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2274
reflections
$\theta=2.2-21.6^{\circ}$
$\mu=1.11 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, yellow
$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
(SADABS; Sheldrick, 2001)
$T_{\min }=0.733, T_{\max }=0.809$
12351 measured reflections
4511 independent reflections
3444 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-11 \rightarrow 12$
$k=-11 \rightarrow 12$
$l=-29 \rightarrow 27$

Refinement

Refinement on F^{2}

> H-atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0678 P)^{2}\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.50 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.34 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{O} 1$	$2.014(2)$	$\mathrm{Zn} 1-\mathrm{N} 3$	$2.056(3)$
$\mathrm{Zn} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.022(2)$	$\mathrm{Zn} 1-\mathrm{N} 2$	$2.071(3)$
$\mathrm{Zn} 1-\mathrm{O} 3$	$2.023(2)$		
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 3^{\mathrm{i}}$	$158.56(11)$	$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{N} 3$	$107.55(11)$
$\mathrm{O}^{\mathrm{I}}-\mathrm{Zn} 1-\mathrm{O} 3$	$103.14(10)$	$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 2$	$79.19(11)$
O3 $^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 3$	$78.10(10)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 2$	$86.21(10)$
$\mathrm{O}_{1}-\mathrm{Zn} 1-\mathrm{N} 3$	$98.03(11)$	$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{N} 2$	$139.67(11)$
O3 $^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 3$	$101.98(12)$	$\mathrm{N} 3-\mathrm{Zn} 1-\mathrm{N} 2$	$111.98(12)$

Symmetry code: (i) $-x,-y+2,-z$.

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C16-H16 $\cdots \mathrm{O} 1$	0.93	2.39	$3.119(5)$	135
O4-H4A $\cdots 5^{\mathrm{ii}}$	0.82	1.87	$2.677(4)$	166
O2-H2A $\cdots \mathrm{N} 1$	0.82	1.84	$2.561(4)$	146

Symmetry code: (ii) $x-1, y, z$.

The methyl H atoms were constrained to an ideal geometry, with $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$.

Figure 1
A view of the title complex, showing the labelling of the non-H atoms and 20% probability ellipsoids. The suffix 'a' corresponds to the symmetry position $(-x, 2-y,-z)$. H atoms have been omitted.

Figure 2
A view of the crystal packing along the a axis. Hydrogen bonds are shown as dashed lines.

Data collection: SMART (Bruker, 2001); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2001); program(s) used to refine structure: SHELXL97 (Sheldrick, 2001); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

References

Bruker (2001). SHELXTL (Version 6.12), SADABS (Version 2.10), SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Desai, S. B., Desai, P. B. \& Desai, K. R. (2001). Heterocycl. Commun. 7, 83-90. Sheldrick, G. M. (2001). SHELXS97 and SHELXL97. University of Göttingen, Germany.

